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This experiment deals with the theoretical background of the analysis through NMR. This method
is used for non-invasive diagnostic of a medical investigation as well as for conformation and geometry
analysis in material sciences, chemistry or physics.

I Introduction

Each proton has nuclear spin I with |I| =
√

I(I + 1)~–
just like all angular momentum related quantum num-
bers. The z component of I is given by

MI = −I,−I + 1, . . . , I (1)

For protons (which are in fact fermions), the quantum
number is known[1] to be I = 1

2
so MI = − 1

2
, 1

2
. The

selection rule is ∆MI = ±1. For the magnetic moment,
we have

µI = gKµKI = γI~I (2)

with the gyromagnetic relationship γI and

µK =
e

2mp
~ (3)

Under the influence of an external magnetic field B0 =
B0êz, this magnetic moments separates the degenerate
states at E0

E(MI) = E0 − γI~B0MI (4)

In general, the sign only affects the order of the energy
levels according to eqn. (1). The selection rule mentioned
before leads to the conclusion, that all transitions share
the same energy difference

∆E = |E(MI)− E(M ′

I)| = γI~B0|MI −M ′

I |

= γI~B0 (5)

In order to induce transitions, the resonance frequency
fr has to be found

hfr = ∆E ⇔ fr =
γI
2π

B0 (6)

Figure 1. Experimental setup with induction coil I and mea-
surement coil M.

I.A Bloch equations

As this experiment is not able to operate on single pro-
tons, we have to find mathematical methods in order to
deal with the total magnetic momentum M0 formed by
the addition of all the protons’ spins. Any analyzed mate-
rial can be expected[2] to contain at least some 1017 spins,
so statistical effects are neglectable. For M0, the influ-
ence of the external magnetic field can be described[2]
using

d

dt
M = γIM×B0 (7)

For an external magnetic field, M0 is given[3] by the
static magnetic susceptibility χ0

M0 = χ0B0 =
Ng2Kµ

2
KI(I + 1)

3kBT
B0 (8)

with the number of nuclear spins per volume N .
The magnetic momentum M0 precesses around the

axis of the external magnetic field with the frequency[2]

ωL = γIB0 (9)

which is identical to the resonance frequency fr and is
called Larmor frequency. In the following, the observer
is placed in a reference system rotating around êz with
ωL[4]. Adding the effects of relaxation described later on,
we obtain[3] the Bloch equations

dM0êx

dt
= ωLM0êy −

M0êx

T2

(10)

dM0êy

dt
= −ωLM0êx −

M0êy

T2

(11)

dM0êz

dt
= −

M0êz − |M0|

T1

(12)

According to eqn. (4), the M+

I = 1

2
state is lower than

the M−

I = − 1

2
one. As we assumed thermal equilibrium

Table I. Relevant constants.

symbol value comment

γI 2.67522 ·108 rad s−1 T−1 proton only

µB 9.27401 · 10−24 JT−1 universal

µK 5.05079 · 10−27 JT−1 universal

gK 5.58562 proton only
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Figure 2. Free induction decay according to [4, 5] for ω 6= ωL

(green) and ω = ωL (dashed blue). Theoretical values.

using a Boltzmann distribution, there are more protons
in M+

I state than in M−

I state. Thus, M0êz > 0. Due
to the precession, the expectation values for M0êx and
M0êy are zero. However, the difference in the occupation
number N± is quite small.

N± = N0 exp

(

−
E0 ∓

1

2
∆E

kBT

)

(13)

For the relative difference, this relation yields

N+

N−

= exp

(

−
E0 −

1

2
∆E

kBT
−

E0 +
1

2
∆E

kBT

)

= exp

(

∆E

kBT

)

= exp

(

γI~B0

kBT

)

(14)

With γI~/kB ≃ 1.28449 · 10−2 K T−1 and a low temper-
ature environment, very strong magnetic fields are nec-
essary in order to achieve big differences in the occupa-
tion number. As earth’s magnetic field is very weak, the
difference of N+ and N− is almost zero and the occupa-
tion numbers are almost identical. Therefore, when plac-
ing the sample within the magnetic field B0 it may take
some time until the free precession component M0êz has
reached its final value, so before starting any experiments
one should wait for about four times T1[2, 5].

I.B relaxation methods and relaxation times

If no damping effects occurr, the alignment of the spins
would be stable. However, experiments show various
damping effects with exponential decay.

At first, spin-lattice relaxation has to be considered.
The term ‘lattice’ is used for historical reasons[2] and has
no physical implications for this experiment. The idea

can be described easily: within an external magnetic field
the total magnetization is bigger than zero in equilibrium
state but reaches zero for a vanishing magnetic field due
to equally occupied energy levels. Thus, there has to be a
process that equalizes the occupation numbers after the
sample is removed from the magnetic field. This process
is called ‘spin-lattice relaxation’[3]. The corresponding
time constant for the exponential decay is T1. In some
cases, the free precession may continue for a few seconds
after the B1 field is switched off[3].

The second one, the spin-spin relaxation, is a result
of the mutual influence of the protons’ magnetic fields
on all adjacent protons[2]. As the relative phase of the
protons changes over time, the total signal decays with
the time constant T2. For protons in water, T2 ≃ 3s[2].
T2 raises exponentially with increasing temperature[4].
An alternative name for T2 is the ‘transverse relaxation’
time[3].

The final one results from imhomogeneous magnetic
fields Bi. As B1 is pulsed and effective for a rather
short duration τ only, B0 has a much higher rele-
vance. The inhomogeneities are given as slightly dif-
ferent field strengths within the sample[2]. The time
constant accounting both for the field inhomogeneities
and the spin-spin relaxation is called T ∗

2 . The effects of
these inhomogeneities can be compensated by repeated
spin echo sequences[4]. The inhomogeneities ∆B can be
determined[6] from

T ∗

2 =
ln 2

γI∆B
(15)

For long pulses, it has to be kept in mind that all re-
laxation effects affect the spins even during the rotation
pulses. Besides the purely method immanent issues, the
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Figure 3. Time dependency of the magnetization response
from an inversion recovery pulse at t = 0 according to [2].
This describes the longitudinal relaxation[4]. Theoretical val-
ues.
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strength of the response from the sample may lead to
even higher, non-exponential damping[2]. This is the case
if the induced field in the receiver coil is strong enough
to induce a current within the coil which itself emits a
magnetic field. This field can influence the Larmor fre-
quency and thus alter the measured time dependency of
M0. For protons in water, this induced field is expected
to be rather weak[2].

In general, the spin lattice relaxation time T1 is the
longest, as M0êz can only reach its maximal value if the
projection of M0 on the xy-plane is zero, so the transver-
sal relaxation has to be finished. As T ∗

2 keeps track of
additional damping effects in comparison to T2, T ∗

2 is
shorter than T2. Therefore, we have[5]

T1 ≥ T2 ≥ T ∗

2 (16)

Paramagnetic ions within the sample reduce T1 and
T2 significantly due to their local magnetic field[3]. Es-
pecially the very small electron spin relaxation time of
about 3 · 10−9s results in highly fluctuating fields. Thus,
a higher concentration of paramagnetic ions is expected
to lead to lower relaxation times. As a rule of thumb,
both T−1

1 and T−1
2 are proportional to the paramagnetic

ions’ concentration[3]. Additionally, the relaxation times
depend both on constant physical properties of the ions
as well as on experimental properties like the tempera-
ture or pH[3, 7]. When considering Brownian motion,
the temperature dependecy is evident. Throughout the
whole experiment the CuSO4 ions are less than 0.36%
of the sample, so in case all molecules were fixed, most
of the protons would be unaffected by the paramagnetic
ions. Therefore, a higher temperature leads to smaller de-
cays. Obviously, changing the pH of the sample changes
the probability for every proton to be influenced by a
paramagnetic ion.

I.C pulse sequences

Unless otherwise stated, all pulses are issued along êx.
Each magnetic field pulse B1 ⊥ B0 with the dura-

tion τ and the resonance frequency rotates the vector
M0 through an angle of

α = γIB1τ (17)

For B1 ≫ B0, the rotation axis is B1B
−1

1 . For B1 ≪ B0,
the rotation axis is êz. In all other cases, the rotation axis
is given by the effective field resulting from the linear
combination of B1 and B0. The first case is the usual
one[2]. All pulses are being referenced to in terms of α.

The first ‘sequence’, called ‘inversion recovery’ is used
for determining T1. It consists of a single π pulse followed
by a π/2 pulse after τ ′[5]. The response is given[2] by

M0(t)êz = |M0(0)|

[

1− 2 exp

(

−
t

T1

)]

(18)

In case of repeated experiments with π pulses, the spare
time tp between the successive runs for a relative recovery
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Figure 4. Measurement using the Carr-Purcell sequence
with arbitrary echo shapes but correct amplitudes. The spin
echo sequence terminates at t = 3τ ′. Theoretical values.

of a is given by

M0(tp)êz = aM0(0)êz ⇔ tp = −T1 ln
1− a

2
(19)

As shown in Figure 3, T1 can be directly determined
by measuring the zero crossing after T1 ln 2. However,
this is being discouraged from as the results are assumed
to be inaccurate[5].

The second sequence ‘spin echo’ consists of two pulses
π/2, τ ′, π, τ ′ with the intermediate pauses τ ′[2]. The
first π/2 pulse shifts M0 from êz to êy. During the time
τ ′, the spins rotate within the xy-plane. As the rotation
frequency depends on the magnetic field, the spins of
protons being affected by slightly different magnetic field
strengths are being separated. However, the differences
in the magnetic field can be assumed[4] to remain static
throughout durations of the magnitude of τ ′. Thus, the
phase difference ϕ between any of the spins and êy is
linear in τ ′. The π pulse between the two pauses reverses
the order of the spins within the xy-plane. After the
second break, all spins are collinear again, although they
are now aligned along −êy.

A slighly modified version is the ‘Carr-Purcell’ se-

Figure 5. spin-echo sequence[4]
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Table II. Overview of measurement methods[5]. Subscript
denotes axis.

name var. sequence

inversion recovery T1 πx, τ ′, πx/2

spin echo T ∗

2 πx/2, τ
′, πx

Carr-Purcell T ∗

2 πx/2, τ
′, (πx, 2τ ′)n

mod. Carr-Purcell T ∗

2 πx/2, τ
′, ((−1)nπx, 2τ ′)n

Meiboom-Gill T ∗

2 π/2, τ ′, (πy, 2τ
′)n

quence. Basically, the spin echo sequence is repeated over
and over until the signal amplitude decreased too far and
vanished in the signal noise. As the spins have to be
flipped onto the xy-plane only once, the sequence is π/2,
τ ′, π, 2τ ′, π, 2τ ′, . . . . The major drawback is the error
summation. In case the π/2 pulse is different from the
theoretical optimum by a phase β, then the initial pro-
jection on êy is smaller but the experimental data itself is
unaffected with the exception that the signal might van-
ish earlier due to the decreased amplitude. But in case
the π pulse differs from the optimum in a phase β, the
exponential decay gets modulated by a cosine function,
so the nth impulse from the Carr-Purcell method is

M0(tn)êy = cos(n|β|) exp

(

−
t

T ∗
2

)

(20)

One slight adjustment is able to cope with these errors:
if the sequence uses alternating π and −π pulses, the er-
rors would cancel out. For these measurements, only the
peaks with positive amplitude have to taken into account
for analysis.

The fourth sequence consists of only one pulse and is
used for measuring the free induction decay time T ∗

2 . One
π/2 pulse shifts M0 into the xy-plane. Without any ex-
ternal effects, M0 precesses around êz while the damping
reduces |M0|.

The fifth sequence is similar to the Carr-Purcell one
but all π pulses are issued along êy instead of êx. This
‘Meiboom-Gill’ method is able to cope with a slight
deviation of π pulse length, as well[5]. At first, a π/2
pulse shifts the magnetization onto êy. The spins start
to diverge in the xy-plane and get shifted by the π pulse
after τ ′. Now all the spins focus again on êy after τ ′.
In case the pulse length deviation leads to a phase dif-
ference β, the π pulse shifts the magnetization vector to
a position slightly off the xy-plane. This error will be
corrected by the next π pulse. Again, only every sec-
ond peak should be considered for the analysis, as they
all share the same sign. This method is considered to
be advantageous when compared to the extended Carr-
Purcell method in terms of experimental effort as all π
pulses are positive.

Table II enlists all described pulse sequences and their
corresponding observable.

Table III. Adjusted values of the field parameters of the per-
manent magnet in arbitrary units after adjusting for an op-
timal field homogeneity. The error was chosen due to inac-
curacy in determination of the best shape of the exponential
decay and the controller’s mechanical clearance.

name value

X (0.35± 0.05)

Y (6.72± 0.05)

Z (3.74± 0.05)

Z2 (−6.90± 0.05)

II experimental setup

As shown in Figure 1, we used the homogeneous magnetic
field with B = 0.49T of a permanent magnet containing
a coil. Although a permanent magnet itself does not
guarantee a homogeneous field at all, the sample’s minor
size allows for this assumption. To reach a highly homo-
geneous static magnetic field over the region of the sam-
ple we adjusted the four additional coils nearby the per-
manent magnet using the corresponding controller. The
homogeneity is maximal if the time constant for the ex-
ponential time dependency of the free induction decay
(FID) is as large as possible. In the beginning, we ad-
justed the spectrometer with a light mineral oil sample
and then continued using a Copper (II) Sulfate solution
CuSO4 with different concentrations of 0.05mol, 0.1mol
and 0.2mol for the measurements of the relaxation times
throughout the experiment. All samples were provided
in small cavities with an approximate sample diameter
of two millimetres. The settings considered to be opti-
mal in terms of the FID time constant are presented in
Table III.

In the second step we determined the resonance fre-
quency of the system. This frequency is expected to
match the Larmor frequency in eqn. 9. In order to
search for the resonance case, we adjusted the frequency
generator’s settings and observed the maximum initial
intensity M(0) of the FID. We found f = 21.048MHz

Figure 6. Enclosing shape of a π/2 pulse (filled) after the
adjustment together with the frequency generator output
(stroked, thick). The enclosing shape is modulated with
TL = f−1 ≃ 0.048 · 10−6 s. Vectorized oscilloscope output.
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whereas the theoretical value is fT = 20.863 for an mag-
netic field of B = 0.49T. As the spectrometer uses the
same coil for both the pulses and the signal measure-
ment, a oscillating circuit is necessary to tell signal and
response apart. Hence, we had to adjust the eigenfre-
quency of the inner coil to the resonance frequency of
the system by putting a sensor into the samples’ position
and adapting the corresponding capacities. The oscillo-
scope showed the pulse shape as recorded by the sensor.
The final pulse shape is presented in 6.

In the next step, we adjusted the pulse durations for
both the π/2 and the π pulse. To obtain the duration
for π/2, we observed the FID on the oscilloscope for dif-
ferent pulse lengths. One example is depicted in 7. On
a related sidenote, the oscillations on the FID signal re-
sult from a setup slightly off resonance. The smaller the
modulations, the better the resonance criterion is met.

Figure 7. FID with maximal amplitude after a π/2 pulse of
3.4 ms. Oscilloscope output.

For the π/2 pulse we found an optimal duration in
terms of a maximal FID amplitude of 3.4 ms. Although
the angle of rotation depends linearly on the pulse du-
ration according to eqn. (17), we measured the π pulse
separately instead of doubling the duration mentioned
above. Searching for a minimal FID amplitude, we ob-
tained a π pulse duration of 5.02 ms. As neither pulse
duration is supposed to be determined with a high ac-
curacy, the difference of the two times’ quotient is obvi-
ous but not that important, as only the Carr-Purcell
and inversion recovery methods suffers to some extend
from inexact π pulses. However, the accuracy of the π/2
pulses affects mostly the amplitudes but leaves the time
contants invariant.

III results

The time between two consecutive pulse sequences has
set to at least 480 ms. This is supposed to be by far
large enough in order to keep the measurements from

Table IV. Dependency of T ∗

2 on the CuSO4 concentration.

concentration
[mol/l]

T ∗

2 [ms] inhomogeneity [µT]

0.05 (5.11 ± 0.05) (0.507±0.005)

0.1 (2.43 ± 0.01) (1.066±0.004)

0.2 (0.99 ± 0.01) (2.62±0.03)

interfering.

III.A inhomogeneity

According to the Bloch equations, the time constant T ∗
2

can be determined from

lnMx,y(t) = −
t

T ∗
2

+ ln [Mx,y(t0)] (21)

To calculate the influence of the inhomogeneity of the
magnetic field on the relaxation time we analyzed the
intensity of the FID signal after a single π/2 pulse for
different values of τ . From the slope of 21 T ∗

2 can be
obtained. The results for three different concentrations
are given in Table IV.

The three values of T ∗
2 should be equal, as T ∗

2 only
depends on the inhomogeneity of the magnetic field but
does not depend on the CuSO4 concentration in the sam-
ple. Nevertheless, the measured values are significantly
different. The measurement of the peaks’ intensities of
the FID happened to be very precise, hence the error
arises mainly from the variation of the measured values
from the linear fit caused by a systematic error. This is
a result of the fact, that we solved the Bloch equation
under the assumption that T ∗

2 is large compared to T2

but during the measurement it turned out that they are
of same order so we measured a combination of both re-
laxation times. For the calculation of ∆B according to
eqn. (15) we used the average of T ∗

2 and got

∆B = (0.91± 0.05)µT

III.B spin-spin relaxation time T2

The spin-spin relaxation time T2 can be measured by
applying several methods discussed in the introduction,
namely spin-echo Carr-Purcell (CP) and Meiboom-
Gill (MG). We performed the measurement refering to
CP via an initial π pulse followed by N ≥ 10 π/2 pulses.
Surprisingly the second and fourth peak are methodically
too low compared to the expectations build by the sur-
rounding peaks and do not fit into the exponential decay
so we decided to ignore them for the calculation of the
relaxation times.

We plotted the peaks’ logarithmic intensity over the
time as multiples of τ . From the slope of the linear fit
we could obtain the values for T2. as shown in Figure 9.

We followed the same procedure for MG and spin-echo
to obtain the values of T2 of those methods. The peaks
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Figure 8. Intensity of Mx,y versus delay times τ via CP
method of 0.05mol CuSO4

.
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Figure 9. TODO Linear regression fit for CP method of
0.05mol CuSO4 to calculate T2. We find T2 = (4.77±0.11)ms

itself are again very accurate so the error of T2 mainly
arises from the systematic error as for CP because we
found the second peak to be significantly too short for
an exponential decay. Hence we neglected it for the cal-
culation of T2. The spin-echo method just consists of two
peaks so the relaxation time for that method might be
significantly too long as the slope of the line between the
two peaks might be too steep. The results of all methods
are presented in Table V.

Figure 10 shows the dependency of Ti on the CuSO4

concentration. For both times, the function

g(x) =
c

x
+ d (22)

Table V. T2 for different concentrations of the CuSO4 samples
measured with spin-echo (SE), the Carr-Purcell method
(CP) and the Meiboom-Gill method (MG).

0.05mol 0.1mol 0.2mol

SE (5.61± 0.01) (0.53± 0.90) –

CP (4.77± 0.11) (3.03± 0.09) (1.36± 0.05)

MG(8.67± 0.17) (4.93± 0.22) (1.41± 0.08)
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Figure 10. Dependency of Ti on the CuSO4 concentration.

for the concentration x has been used as basis for the fit.
For T ∗

2 , the resulting parameters are

c = 0.273
ms · l

mol
d = −0.35ms

and for T2, we get

c = 0.468
ms · l

mol
d = −0.46ms

III.C spin-lattice relaxation time T1

T1 has been measured using the inversion recovery pulse
sequence. Firstly, a π pulse flips the sign of Mêz. The
following π/2 pulse rotates M into the xy-plane and thus
makes the former z-component detectable. By changing
the duration of the break τ between the two pulses, we
can investigate the expected exponential decrease of the
amplitude of Mêz(t). Fitting the parameters a and b
with the measured data for the 0.05 molar CuSO4 solu-
tion from Figure 11

f(t) = a ·
[

1− 2 exp(−b2t)
]

(23)

gives

a = (1.102± 0.025)V
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b = (−0.1939± 0.0030) s−1/2

The resulting fit is visualized in Figure 11, as well.
The corresponding time constant T1 can be determined

in two ways: either the zero crossing of the magnetiza-
tion has to be observed or the fit parameter b has to
be interpreted. The zero crossing is considered to be
rather unreliable, as performing measurements near the
zero value was difficult. On top, a linear fit of the data
points before the zero crossing results in a different zero
crossing as fitting the data points right after the expected
position. Thus, we deciced to let these two fits determine
the error for the zero crossing method. This way, we get

T1 = (24± 4)ms

Using

T1 =
1

b2
(24)

∆T1 =

∣

∣

∣

∣

∂T1

∂b
∆b

∣

∣

∣

∣

= 2
∆b

b3
(25)

the result is

T1 = (26.598± 0.003)ms

Both values are statistically identical.

IV discussion

In the NMR experiment we used different techniques to
measure relaxation times and confirm theoretical expec-
tations. We prepared our system with different samples
and generated pulses to measure the time dependence of
the magnetization using various methods.
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Figure 11. Data measured for T1 by inversion recovery for the
molar CuSO4 solution and a fit.

First of all, we measured the spin-lattice relaxation
time T1 using the inversion recovery method. We ob-
tained T1 = (24± 4)ms by the zero crossing of the mag-
netization and T1 = (26.598± 0.003)ms from the fit. In
general, the value of T1 extracted from the fit is more
accurate as the zero crossing strongly depends on rather
accurate values for Mz ≃ 0. However, the data near the
zero crossing was of the same order of magnitude as the
background noise.

The second method seems to suffer from a systematic
error as the magnetization does not return to its full ini-
tial value but remains about 15 percent smaller instead.
However, the asymptotical behavior matches the fitted
curve. Therefore, it seems reasonable to blame the high
initial value for the difference. Additionally, just around
the zero crossing the exponential dependency seems to
be broken as the part after the zero crossing seems to be
shifted to bigger times.

In the next step, we analyzed the inhomogeneity of
the applied static magnetic field for different concentra-
tions of CuSO4 samples. Theory predicts that the relax-
ation time is just dependent on the inhomogeneity of the
field but not on the paramagnetic ions’ concentration.
Hence, we measured the characteristic relaxation time
T ∗
2 which was expected to be in the region of several ms.

We can confirm that expectation but our measurements
have also shown a concentration dependence. The higher
the concentration of CuSO4 ions, the smaller the relax-
ation time. This violates our theoretical expectations for
T ∗
2 but matches the expectations for T2. Although the

measurement ifself turned out to be very accurate, the
intensity of the peaks did not fit the characteristic expo-
nential decay very well. There was some systematic error
because we can observed that the decay happens faster
than it should by theory. The reason for this could be a
non-linear inhomogeneity of the field or the off resonance
setting which leads to a faster decay than theoretically
expected. We found that inhomogeneity of the magnetic
field is ∆B = (0.91± 0.05)µT.

Up next, we investigated the real spin-spin relaxation
time T2 by using three different methods namely spin-
echo, Carr-Purcell and Meiboom-Gill. From the-
ory, we expect that the relaxation time decreases with
increasing CuSO4 concentration. In general, we expect
CP to be less accurate than SE or MG. In addition to
that, we observed that the second intensity peak always
was significantly too short.

The CP method is very dependend on the exact du-
ration of the π pulse which itself requires an accurately
adjusted resonance frequency of the system. Hence, we
expect the MG method to provide the most precise val-
ues for T2 because it is more resistent to errors concern-
ing the π pulse. An error for the π pulse results in a
apparently faster decay of the signal which means T2 will
decrease. The results shown in Figure V. Our measure-
ment confirms these expectations, as the results of the
MG method shows the best linear dependency between
relaxation time and concentration of CuSO4 ions as sug-
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gested by [3].
Furthermore, according to theory, the T ∗

2 relaxation
times should be higher than the corresponding T2 values
but we found them to be almost equal and T ∗

2 shows the
same concentration dependency as T2 which is contra-
dicting the theory.

All in all, we could confirm most the general statements
listed in the theoretical section. The spin-lattice relax-
ation time T1 is significantly higher than the spin-spin
relaxation times T2 and T ∗

2 . The expected dependence

between spin-spin relaxation time and concentration of
CuSO4 ions could also be confirmed. Nevertheless, we ob-
served some systematic errors during the measurement.
The relaxation times decreased too fast, which may result
from a suboptimal π pulse. The prints of the oscilloscope
signal showed sharp intensity peaks but also fluctuated
a lot. Hence, as we always measured average values, we
may have estimated the errors in the peaks’ intensity too
small, which might be one reason for the error in decay
rates.
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