Interpolation (in Chemistry)

Guido Falk von Rudorff

Potential energy surfaces
- Underlying function expensive
- Intermediate values required

Curve fitting
- Simpler / representative function
- Computationally more efficient evaluation of arbitrary functions
- Analyse coefficients
- Curvature of potentials
- Particle diffusion

Typical approach 3

1D case
- Polynomials (possibly piecewise)
- Cubic functions, mostly
- Differentiable, and derivatives are used for boundary conditions
- Simple functional form: fast

Higher dimensional case
- Nearest neighbor value (fast, and increasingly efficient in higher dimensions)
- Basis functions
- Radial basis function (RBF) in scipy
- Hard to accelerate
- Volume “close by” decreases quickly with higher dimensions
- Careful as to whether it makes sense at all

Main classes 4

Exact

- At the reference points, the interpolant has the reference values
- Prone to overfitting

- Noise problematic

- Can be numerically unstable

Approximate
- (Almost) close to the reference values 81
- More regularized (Parameter s)
- Nolse acceptable >
- If oversimplified: wrong results

Overfitting 5

Danger of misleading results
- High order polynomials are ill-conditioned

- Runge’s phenomenon 1
- Do not pick them
- Best fit comes from the underlying system 0
- Here: quadratic model
- Piecewise B-splines (BS) > -11 — BS
- Well-behaved but not error free Reg. BS
- At least fewer numerical errors . —— Quadratic
- Regularized B-splines (Reg. BS) — High order
- Less subject to noise 3

50 -25 0 25 50

Cubic splines B-spline
- Pilecewise polynomials - Plecewise polynomial order n
- Match first and second derivative - Match n-2 first derivatives
- Only first derivative smooth - Control points rather than data points
- No requirement for particular spacing - No requirement for particular spacing
7.5
- —— clamped 5- —— B-spline
> 15t derivative > 15t derivative
251 —— 2"d derivative —— 2"d derivative
0- \\ /
0.0— /\//
0 5 10 15 20 0 5 10 15 20

X X

Interpolation
- scipy.interpolate
- Many Interfaces available 91 °

Groups 81
- Cubic splines (Exact)

- B-splines (Approximate) > 77 .
6_
51 °
0 5 10 15 20

Python: cubic splines

Code

import scipy.interpolate as sci
import numpy as np

xs = (8, 5, 1le, 15, 20)
ys = (8, 5, 9, 8, 7)

Xss = np.linspace(@, 20, 108) E;_
plt.scatter(xs, ys)
cspline = sci.CubicSpline(xs, ys, bc_type="not-a-knot")

plt.plot(xss, cspline(xss)) >
6 —— clamped
- Boundary conditions important not-a-knot
- clamped: First derivative 0 —— natural
- not-a-knot: first and second | | | | |
polynomial are the same 0 5 10 15 20
- natural: Second derivative 0 X

- periodic: If data Is periodic
- Object can be called like a function

Python: B-splines

Code

import scipy.interpolate as sci
import numpy as np

Xs = (9, 5, 1@, 15, 29)
ys = (83 5, 9, 8, 7)

Xss = np.linspace(@, 20, 100) E;_
plt.scatter(xs, ys)

bspline = sci.UnivariateSpline(xs, ys, s=0.1)
plt.plot(xss, bspline(xss)) >\

- s as regularizer
- By default: cubic B-splines
- Object can be called like a function

Python: Example

Task

- Find minimum

- Optimizer of unknown cost
- Find fixed-cost alternative

from pyscf import gto
import numpy as np
from pyscf.data import nist

def energy_N2(nuclear_distance_angstrom):
mol = gto.M(atom=[[*N', ©., ©., ©.8],
['N', ©., 0., nuclear_distance_angstrom]],
basis="'6-31G', verbose=0)
mf = mol.RHF().run()
return mf.e_tot

Xs = np.linspace(©.8, 1.5, 5)

ys =[]

for x in xs:
ys.append(energy_N2(x))

Energy [Ha]

-108.4 1

-108.61

-108.81

0.8

1.0 1.2
Nuclear distance

1.4

Python: Example

Task

- Find minimum

- Optimizer of unknown cost
- Find fixed-cost alternative

import scipy.interpolate as sci _)
cspline = sci.CubicSpline(xs, ys) ‘I()Es'l+
print (cspline.derivative().roots())

[1.08307817 1.75348628]

import scipy.interpolate as sci
bspline = sci.UnivariateSpline(xs, ys, s=1, k=4)
print (bspline.derivative().roots())

-108.6 -

Energy [Ha]

[1.88593233]

sco.minimize(energy N2, x@=1.) _1 08.8 1

fun: -108.86800562696096
hess_inv: array([[©.14851732]]) .

jac: array([5.7220459e-06]) 0.8 10 12 1.4

message: 'Optimization terminated successfully.' .
nfev: 24 Nuclear distance
nit: 6
njev: 8
status: ©
success: True
x: array([1.88912625])

Python: 2D

Interpolation on grid
- Bivariate spline RectBivariateSpline

Interpolation on irregular points
- Interp2d
- Linear mode: not smooth
- Cubic mode: slow

Other tools in brief

Genetic algorithms
- Large-scale optimisation problem
- Automatable optimisation

Automatic differentiation
- Get derivatives of python code
- No need to derive explicit expressions

Symbolic algebra
- Build mathematical expressions in code
- Reduces errors for long equations

scipy, DEAP

autograd

Sympy

Genetic Algorithms

Global Optimization
- Find minimum with little knowledge of search space
Inspired by evolution

- Genome Vector describing the solution

- Population Set of trial solutions

- Mutation Random change of an existing solution
- Crossover Combine features of two solutions

- Selection Survival of the fittest

Requirements
- Fitness function (Target objective)
- Representation (Solution vector or larger)
- Random solutions
When to use
- Medium dimensionality
- Human time available
When not to use
- Classification

Genetic Algorithm: Example

Global Optimization
- Find three peaks

import numpy as np
import scipy.optimize as sco

Xs = np.linspace(@, 1ee, 1eee)

def func(xs, a, b, c, d, e, f):
result = @
for scale, position in ((a, b), (c, d), (e, f)):
result += scale * np.exp(-8.2 * (xs - position)**2)
return result

def residuals(x®, xs, ys):
return np.abs(func(xs, *xB) - ys).sum()

bfgs = sco.minimize(residuals, xe=(©.1, 1@, ©.1, 20, ©.1, 30), args=(xs, ys), method="BFGS")
print (f"BFGS used {bfgs.nfev} evaluations and has accuracy {residuals(bfgs.x, xs, ys)}")

genetic = sco.differential_evolution(residuals,

args=(xs, ys),

bounds=((@,1), (e, 1ee), (e,1), (e, 1ee), (e,1), (e, 1ee)))
print (f"GA used {genetic.nfev} evaluations and has accuracy {residuals(genetic.x, xs, ys)}")

BFGS used 1132 evaluations and has accuracy 27.715548328799127
GA used 24807 evaluations and has accuracy 5.6151293195716914e-14

0.41

0.31

0.2

0.1

0.01

50

100

Automatic differentiation

Core idea
- Any code is a function f(x) -> y
- Follow program code, apply chain rule and get derivatives

When to use
- Machine learning (how to improve model?)
- Optimization without explicit gradients

i —— function
- Derivatives to complex code .
0.5- derivative
import autograd.numpy as np . .
from autograd import elementwise_grad as egrad — Second del‘lvatlve

def function(xs):

result = xs * @ 0.0 A ~=

for i in range(2): _/
result += np.sin(xs**1) / xs

return result

Xs = np.linspace(2, 1@, 1eee) —0.5—
plt.plot(xs, function(xs), label="function")

plt.plot(xs, egrad(function)(xs), label="derivative")

plt.plot(xs, egrad(egrad(function))(xs), label="second derivative")

Library
- autograd

Symbolic algebra

Core idea

- Mathematical expressions as code

- Analytical differentiation or integration algorithms

- In python: can be mixed with other code components

- Switch between numpy functions and mathematical expression

import sympy
X = sympy.Symbol('x")

function = @
for i in range(2):

function += sympy.sin(x**i) / x
function

sin (x) N sin (1)

X X

derivative = sympy.diff(function)
derivative

cos(x) sin(x) sin(l)

X x2 x2

1l = sympy.utilities.lambdify(x, derivative)
1(3)

-0.4391742758521222

Summary

Interpolation
- B-splines
- Cublic splines

Other tools

- Genetic algorithms
- Automatic differentiation
- Symbolic algebra

O ferchault

Y @ferchault

F/\N
[1]
h\ /4

guido.vonrudorff.de

