
Matrix Operations (in Chemistry)
Guido Falk von Rudorff



Motivation

Eigenvectors
- Normal modes, vibrational spectra
- Principal Components Analysis (PCA)

Eigenvalues
- Energy levels of an Hamiltonian
- Molecular graph comparison

Matrix inverse
- Solving systems of linear equations
- Machine learning methods

Matrix multiplication
- Symmetry operations

2



Eigenvectors and eigenvalues 3

Eigenvectors
- Multiplication with A leaves direction 

unchanged
- Invariants of a (symmetry) 

transformation
- Must be non-zero

Eigenvalues
- Linked to eigenvectors
- Set of all is called spectrum



Normal modes 4

Hessian
- Local curvature of the potential energy
- If in local minimum: vibrational modes

Normal modes
- Mass-weighted Hessian Fij=Hij(MiMj)-1/2

- Eigenvalues: Frequencies
- Eigenvectors: Modes



Normal modes in Python 5

Imports
- PySCF: Quantum chemistry 

calculations
- Numpy: Mathematical operations



Normal modes in Python 6

Define a molecule: water
- Coordinates (need to be a minimum!)
- Basis set: measure of accuracy



Normal modes in Python 7

Do the actual calculation
- Restricted Hartree-Fock as a method
- For large molecules: expensive



Normal modes in Python 8

Calculate the analytical Hessian
- For large molecules: even more 

expensive



Normal modes in Python 9

Change the memory layout
- PySCF returns the Hessian as four-

dimensional array
(atom1, atom2, dimension1, dimension2)

- We need it as square symmetric matrix

np.transpose()
- Transposes a matrix = changes axes order
- By default: reverse axes
- Here: Sort into

(atom1, dimension1, atom2, dimension2)

np.reshape()
- Keeps data, looks at it differently
- Here: Makes matrix square



Normal modes in Python 10

Build list of atomic masses
- PySCF has built-in data sets, no copying 

required

np.repeat()
- Repeats each element
- Once for each dimension



Normal modes in Python 11

Build mass-weighting matrix
- Note that np.sqrt() is operating 

elementwise
- matrix * matrix is elementwise 

(np.matmul() would be matrix 
multiplication)

np.outer()
- Outer product
- Pairwise multiplication:

Mij = mimj



Normal modes in Python 12

Get eigenvalues
- From weighted Hessian(!)

np.eigh()
- For symmetric matrices
- Otherwise: np.eig()



Normal modes in Python 13

Get frequencies from force constants
- Harmonic approximation
- Negative and small entries:

3 translational and 3 rotational degrees 
of freedom

np.abs()
- Absolute value
- Here: shortcut (better: remove 

translational and rotational degrees first)



Normal modes in Python 14

Convert to wavenumbers
- PySCF has predefined constants

PySCF can do it



Eigenvalue spectrum 15

Definition
- Unordered set of eigenvalues
- Invariant under permutations

Adjacency matrices
- 1 if there is a bond between atom i and j
- 0 otherwise
- Graph property, many useful algorithms

2

3
1

2 31

Eigenvalues
- ± 21/2, 0
- np.linalg.eigh()[0]

3 21



Solving systems of linear equations 16

Core idea
- Collect terms in matrix
- Invert matrix
- Matrix vector product

np.linalg.inv()
- Inverts the matrix

np.dot()
- Matrix vector product

Overdetermined case
- np.linalg.pinv()
- Pseudoinverse
- Alternative for least-squares fit



Determinant 17

Application
- System unsolvable, i.e. A not invertible: 

det(A) = 0
- np.linalg.det()



Pitfalls 18

Numerics
- Matrix inversion unstable
- Machine epsilon introduces inaccuracies
- Hint: do not simplify algorithms you 

implement

Resources
- Matrices become large quickly

1GB: N=12k
10GB: N=36k

- Matrix operations scale worse
- Matrix multiplication scales as N~2.8



Matrix exponentiation 19

Numerics
- Matrix multiplication scales as N~2.8

- Group matrix operations A4 = (A2)2

- Works for scalars as well
- Reason why Lennard-Jones potential is 

commonly used 



Unstable matrix inversion 20

Simple case
- Hilbert matrix
- Hij= 1/(i+j-1)



Symmetry operations 21

Matrices are common tools
- Entries encode geometrical change
- pymatgen implements these

Identity

Reflection in the xy-plane



Symmetry operations 22

Inversion

Rotation around x



General tip 23

Try to make any problem you face either
- A matrix
- A graph
- An optimization problem

Advantages
- Huge literature on either topic
- Efficient algorithms
- Reliable libraries with interfaces to Python

Libraries in Python
- Matrix: numpy / scipy
- Graph: NetworkX (easy but slow, good visualisation)
- Graph: igraph (fast, but quite technical interface)
- Optimisation: scipy (easy interface)
- Optimisation: DEAP (global optimization, quite technical interface)



Summary

Operations
- Eigenvalues / Eigenvectors
- Matrix multiplications
- Matrix inversions
- Solving systems of linear equations

Caveats
- Numerical stability
- Memory requirements

Python
- pymatgen for symmetry operations

24

ferchault @ferchault guido.vonrudorff.de


