Numerical Integration (in Chemistry)

Goal

Evaluate a proper integral

$$\int_{a}^{b} f(x)dx \simeq \sum_{i} \alpha_{i} f(x_{i})$$

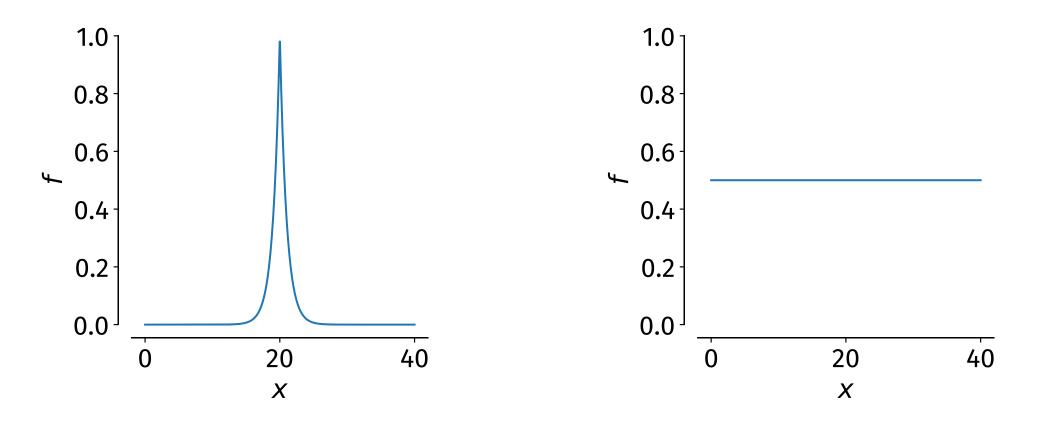
How

- Replace integral by weighted sum
- Be clever about weights and positions

Why *numerical* integration?

- No analytical expression available (most calculations don't have one)
- Expensive evaluations of f

Challenge



Find relevant integration points...

...but don't use too many of them

Challenge in Chemistry

Electron densities in molecules

- Highly peaked (Kato's cusp condition)

$$Z_I \propto \left. \frac{d\rho(\mathbf{r})}{dr} \right|_{r \to \mathbf{R_I}}$$

- Integrals relate to dipole moments, ionic forces, ...:

$$\mu = \int d\mathbf{r}\rho\mathbf{r} \qquad \mathbf{F}_{I} = Z_{I} \int d\mathbf{r}\rho \frac{\mathbf{r} - \mathbf{R}_{I}}{|\mathbf{r} - \mathbf{R}_{I}|^{3}}$$
$$Q_{ij} = \int d\mathbf{r}\rho \left(3r_{i}r_{j} - |\mathbf{r}|^{2}\delta_{ij}\right)$$

- Obtaining the density at one point is expensive

Line shapes in experiments

- Extremely narrow functions

Basic concept

Take a function f

- Bounded
- Smooth
- Defined over interval [*a*, *b*]

Approximate f with polynomials

- Typically not Taylor expansions
- Different kinds of polynomials are used
- Main reason: can be integrated exactly
- Commonly: approximate subintervals separately ("composite integration")

Integrate polynomials

- Take their values at different points x_i
- Calculate weights from the points

Derivation

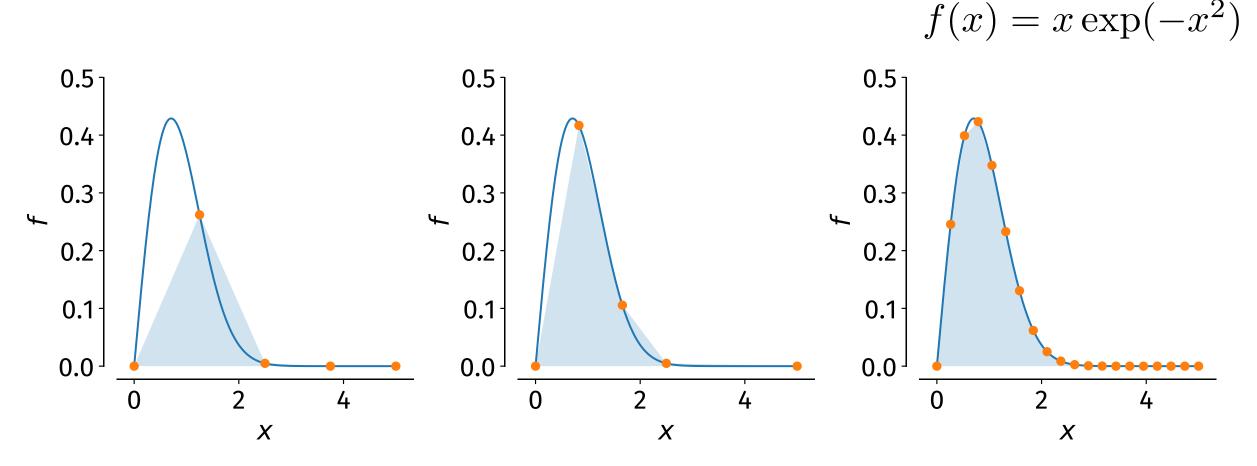
Polynomial approximation, points -> weights

 $\int_{a}^{b} f(x)dx \simeq \sum_{i} \alpha_{i} f(x_{i})$

Errors

Points x_i

- More points, smaller errors (improvement varies with method though)
- Better coverage, smaller errors

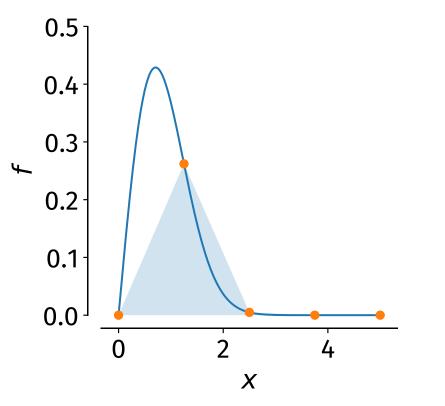


Errors

Polynomial approximation

- Approximation up to *n*-th order does not include higher order contributions
- In leading order: maximal *n+1*-th derivative in [*a*, *b*] gives error bound
- Smaller intervals always reduce errors

Can be bounded



Machine precision

Finite precision of data types

- Exists in all programming languages
- Hardware limit for performance reasons
- Math is done in base 2 (so 0.1 is inexact for computers)
- Only floating-point calculations
- Most problematic: summation and multiplication
- Another reason to use libraries

Workarounds

- Rational numbers (as integers are exact)
- Group summations
- Sort before summation

In Python

- *math.fsum()* for better summation
- Library mpmath for arbitrary precision (as long as you have memory and patience)

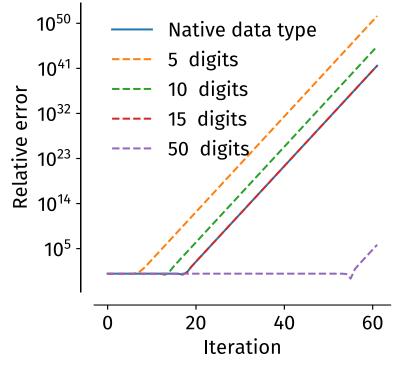
Python	С
a = 1. b = a + 1e-10 print (1 - b)	<pre>#include <stdio.h> int main() { double a = 1.; double b = a + 1e-10; printf("%.15e\n", 1-b); b = a + 1e-20; printf("%.15e\n", 1-b); }</stdio.h></pre>
-1.00000082740371e-10	
a = 1. b = a + 1e-20 print (1 - b)	
0.0	-1.000000082740371e-10 0.000000000000000e+00

Machine precision

Example

```
import mpmath as mp
def iteration native types(count):
    a_n = [1, 1/3]
   for i in range(count):
        a n.append(10*a n[-1]/3 - a n[-2])
    return a_n
def iteration mpmath(count, precision):
    mp.mp.dps = precision
    a_n = [mp.mpf('1'), mp.mpf('1')/mp.mpf('3')]
   for i in range(count):
        a_n.append(mp.mpf('10')*a_n[-1]/mp.mpf('3') - a_n[-2])
    return a_n
def exact(count):
    mp.mp.dps = 100
    a_n = [mp.mpf('1'), mp.mpf('1')/mp.mpf('3')]
   for i in range(count):
        a_n.append(a_n[-1] * mp.mpf('1')/mp.mpf('3'))
    return a_n
```

10 $a_n \equiv \frac{1}{3}a_{n-1} - a_{n-2}$ $a_0 \equiv 1, a_1 \equiv \frac{1}{3} \Rightarrow a_n = \frac{1}{3^n}$



Method Overview

Methods for regular functions

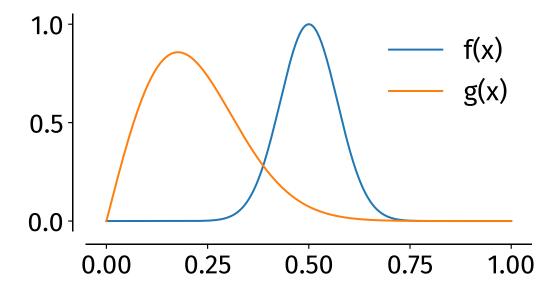
- Newton-Cotes
- Gauss
- Trapezoidal rule
- Monte Carlo

Methods for molecules

- Becke-Lebedev grids

equidistant points non-equidistant but predefined points arbitrary points random points

Follows electron density distribution



$$f(x) = \exp(-100(x - 0.5)^2)$$
$$g(x) = 8x \exp(-16x^2)$$

Newton-Cotes

Approximation

- Based on Lagrange polynomials
- scipy.integrate.newton_cotes

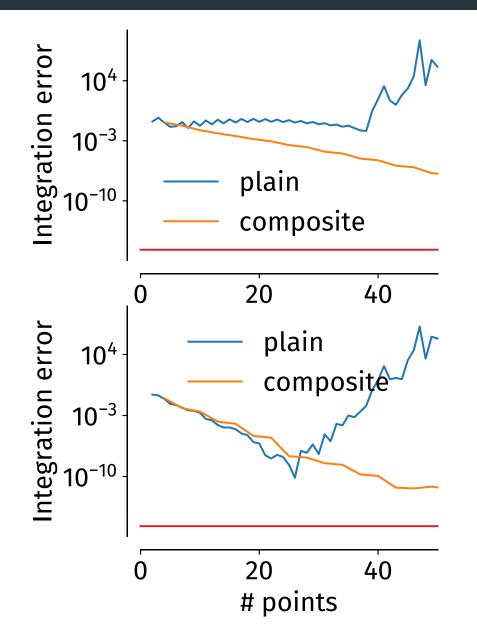
When to use

- Well-behaved curves
- Small integration domains

Caveats

- High orders unstable: prefer smaller domains

```
import scipy.integrate as sci
def function(xs):
    return xs**2
def newton_cotes(function, lower_bound, upper_bound, order):
    weights, error = sci.newton_cotes(order)
    xs = np.linspace(lower_bound, upper_bound, order + 1)
    return (xs[1] - xs[0]) * np.sum(weights * function(xs))
newton_cotes(function, 0, 1, 2)
```

Gauss

Approximation

- Based on Legendre polynomials
- scipy.integrate.fixed_quad

When to use

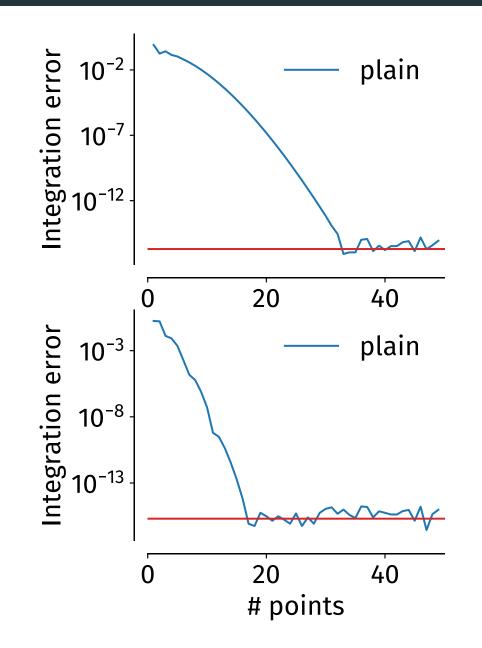
- Endpoints exist

import scipy.integrate as sci

def function(xs):
 return xs**2

sci.fixed_quad(function, 0, 1, n=2)[0]

0.333333333333333333333



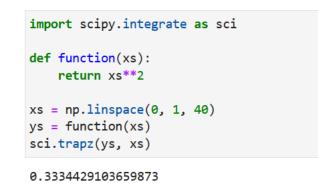
Trapezoidal Rule

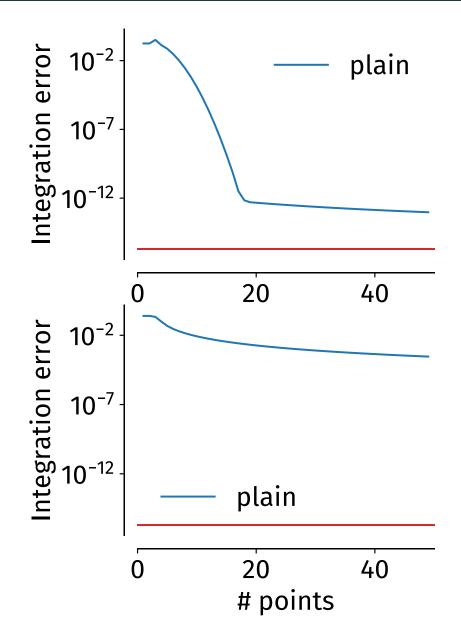
Approximation

- Based on linear functions
- scipy.integrate.trapz

When to use

- Periodic functions





Monte Carlo

Approximation

- Random points

When to use

- High-dimensional
- Highly irregular functions
- Evaluation cheap

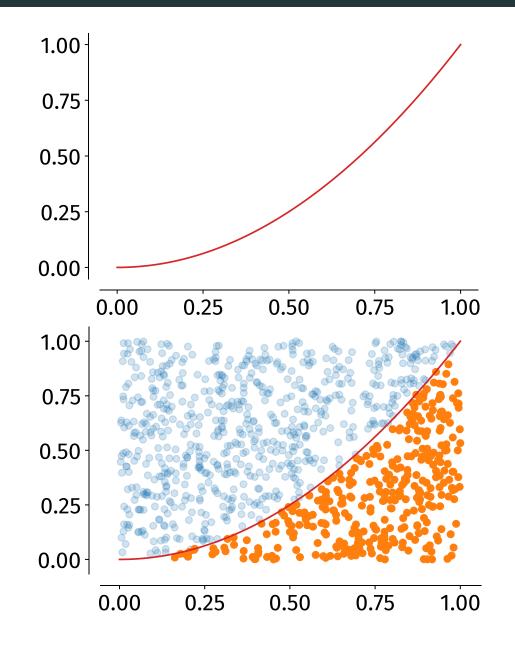
Caveat

- Slow convergence

```
def function(xs):
    return xs**2

def monte_carlo(function, lower_bound, upper_bound, order):
    """ Assumes all functions to be bounded from above at 1."""
    xs = np.random.uniform(size=order) * (upper_bound - lower_bound) + lower_bound
    ys = function(xs)
    compare = np.random.uniform(size=order)
    below = len(np.where(compare < ys)[0])
    return (upper_bound - lower_bound) * below / order

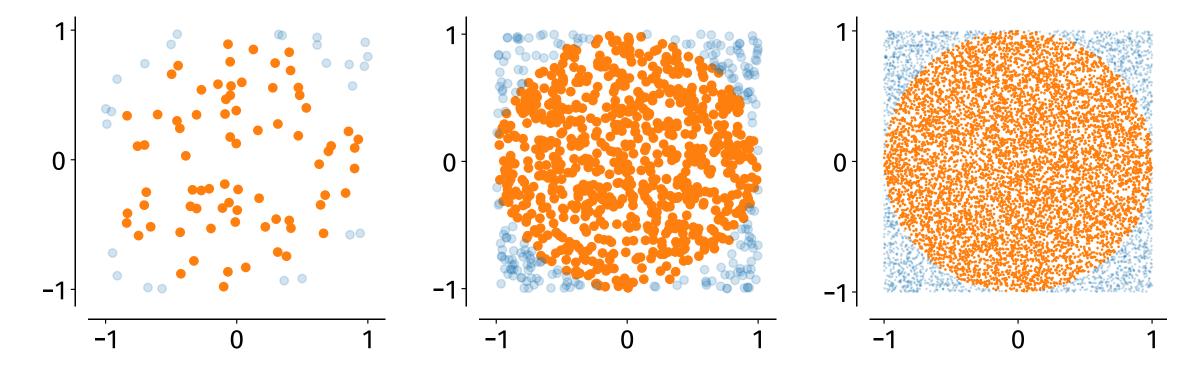
monte_carlo(function, 0, 1, 10000)</pre>
```



Monte Carlo

Slow convergence

- Compare base area (blue rectangle) to integral area (orange)
- Random numbers can be expensive
- Method of last resort



Pitfalls

Functions of local support

- Line shapes
- Hard to find relevant region

High local curvature

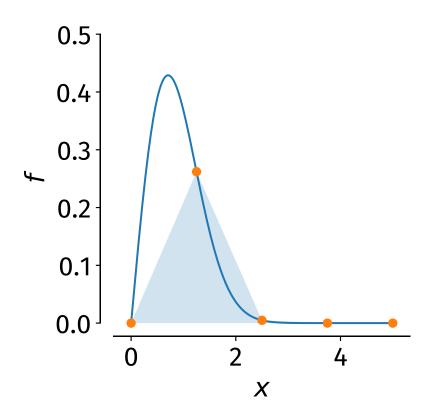
- Hard to capture with polynomials

Higher dimensions

- Grid scaling in N dimensions: g^N

High orders

- Runge's phenomenon



Pitfalls

Functions of local support

- Line shapes
- Hard to find relevant region

High local curvature

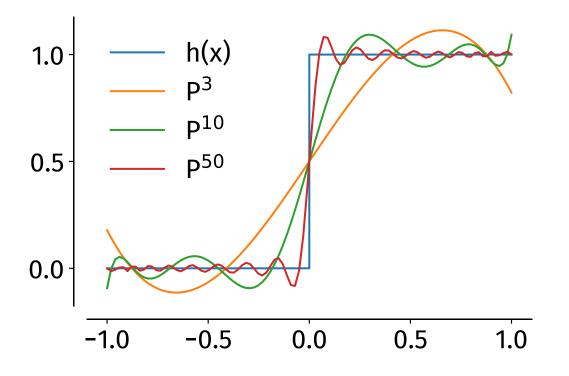
- Hard to capture with polynomials

Higher dimensions

- Grid scaling in N dimensions: g^N

High orders

- Runge's phenomenon



Pitfalls

Functions of local support

- Line shapes
- Hard to find relevant region

High local curvature

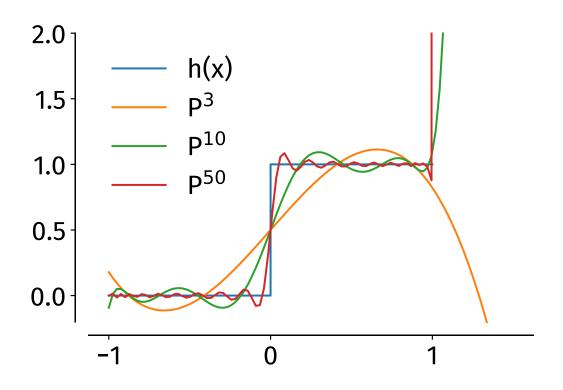
- Hard to capture with polynomials

Higher dimensions

Grid scaling in N dimensions: g^N

High orders

- Runge's phenomenon



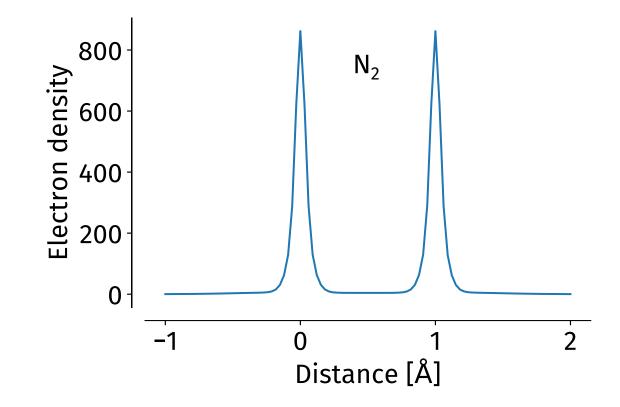
Molecules

Electron densities are peaked

- Local support
- Exponential decay
- Regular grids unsuitable
- Inherently 3D

Custom grids (Becke-Lebedev)

- Spheres around atoms (Lebedev)
- Radii exponentially spaced (Becke)



Molecules

Spherical and other grids

- quadpy package
- pip install quadpy

import numpy as np
import quadpy as qp

scheme = quadpy.sphere.lebedev_019()
scheme.integrate(lambda x: np.exp(x[0]), [0.0, 0.0, 0.0], 1.0)

Molecular grids

- PySCF package
- pip install pyscf

import pyscf.dft

grid = pyscf.dft.gen_grid.Grids(mol)
grid.build()
grid.coords, grid.weights

Summary

Methods

- Newton-Cotes
- Gauss
- Trapezoidal rule
- Monte Carlo
- Becke-Lebedev

Caveats

- High dimensions
- Local support
- High curvature

Python

- Numerical integration of functions
- ... and for molecular geometries

