
Numerical Integration (in Chemistry)
Guido Falk von Rudorff

Goal

Evaluate a proper integral

How
- Replace integral by weighted sum
- Be clever about weights and positions

Why numerical integration?
- No analytical expression available (most calculations don’t have one)
- Expensive evaluations of f

2

Challenge

Find relevant integration points... ...but don’t use too many of them

3

Challenge in Chemistry

Electron densities in molecules
- Highly peaked (Kato’s cusp condition)

- Integrals relate to dipole moments, ionic forces, ...:

- Obtaining the density at one point is expensive

Line shapes in experiments
- Extremely narrow functions

4

Basic concept

Take a function f
- Bounded
- Smooth
- Defined over interval [a, b]

Approximate f with polynomials
- Typically not Taylor expansions
- Different kinds of polynomials are used
- Main reason: can be integrated exactly
- Commonly: approximate subintervals separately (“composite integration”)

Integrate polynomials
- Take their values at different points xi
- Calculate weights from the points

Derivation
- Polynomial approximation, points -> weights

5

Errors

Points xi
- More points, smaller errors (improvement varies with method though)
- Better coverage, smaller errors

6

Errors

Polynomial approximation
- Approximation up to n-th order does not include higher order contributions
- In leading order: maximal n+1-th derivative in [a, b] gives error bound
- Smaller intervals always reduce errors

Can be bounded

7

Machine precision

Finite precision of data types Python C
- Exists in all programming languages
- Hardware limit for performance reasons
- Math is done in base 2

(so 0.1 is inexact for computers)
- Only floating-point calculations
- Most problematic: summation and multiplication
- Another reason to use libraries

Workarounds
- Rational numbers (as integers are exact)
- Group summations
- Sort before summation

In Python
- math.fsum() for better summation
- Library mpmath for arbitrary precision (as long as you have memory and patience)

8

Machine precision

Example

9

Method Overview

Methods for regular functions
- Newton-Cotes equidistant points
- Gauss non-equidistant but predefined points
- Trapezoidal rule arbitrary points
- Monte Carlo random points

Methods for molecules
- Becke-Lebedev grids Follows electron density distribution

10

Newton-Cotes

Approximation
- Based on Lagrange polynomials
- scipy.integrate.newton_cotes

When to use
- Well-behaved curves
- Small integration domains

Caveats
- High orders unstable: prefer smaller domains

11

Gauss

Approximation
- Based on Legendre polynomials
- scipy.integrate.fixed_quad

When to use
- Endpoints exist

12

Trapezoidal Rule

Approximation
- Based on linear functions
- scipy.integrate.trapz

When to use
- Periodic functions

13

Monte Carlo

Approximation
- Random points

When to use
- High-dimensional
- Highly irregular functions
- Evaluation cheap

Caveat
- Slow convergence

14

Monte Carlo

Slow convergence
- Compare base area (blue rectangle) to integral area (orange)
- Random numbers can be expensive
- Method of last resort

15

Pitfalls

Functions of local support
- Line shapes
- Hard to find relevant region

High local curvature
- Hard to capture with polynomials

Higher dimensions
- Grid scaling in N dimensions: gN

High orders
- Runge’s phenomenon

16

Pitfalls

Functions of local support
- Line shapes
- Hard to find relevant region

High local curvature
- Hard to capture with polynomials

Higher dimensions
- Grid scaling in N dimensions: gN

High orders
- Runge’s phenomenon

17

Pitfalls

Functions of local support
- Line shapes
- Hard to find relevant region

High local curvature
- Hard to capture with polynomials

Higher dimensions
- Grid scaling in N dimensions: gN

High orders
- Runge’s phenomenon

18

Molecules

Electron densities are peaked
- Local support
- Exponential decay
- Regular grids unsuitable
- Inherently 3D

Custom grids (Becke-Lebedev)
- Spheres around atoms (Lebedev)
- Radii exponentially spaced (Becke)

19

N2

Molecules

Spherical and other grids
- quadpy package
- pip install quadpy

20

Molecular grids
- PySCF package
- pip install pyscf

Summary

Methods
- Newton-Cotes
- Gauss
- Trapezoidal rule
- Monte Carlo
- Becke-Lebedev

Caveats
- High dimensions
- Local support
- High curvature

Python
- Numerical integration of functions
- ... and for molecular geometries

21

ferchault @ferchault guido.vonrudorff.de

